About MEAJO | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions to authors | Online submission | Subscribe | Advertise | Contact | Login 
Middle East African Journal of Ophthalmology Middle East African Journal of Ophthalmology
Users Online: 833   Home Print this page Email this page Small font sizeDefault font sizeIncrease font size
SYMPOSIUM - OCULAR FACIAL PLASTIC SURGERY
Year : 2015  |  Volume : 22  |  Issue : 4  |  Page : 428-434

Biomaterials and tissue engineering strategies for conjunctival reconstruction and dry eye treatment


1 Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21231; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
2 Oculoplastics and Orbit Division, King Khaled Eye Specialist Hospital, P.O. Box 7191, Riyadh 11462, Saudi Arabia
3 Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21231; Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
4 Oculoplastics Division, Ocular and Orbital Trauma Center, Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA

Correspondence Address:
Jennifer H Elisseeff
400 N. Broadway, Baltimore, MD 21231
USA
Michael P Grant
600 N. Wolfe St., Baltimore, MD 21287
USA
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0974-9233.167818

Rights and Permissions

The ocular surface is a component of the anterior segment of the eye and is covered by the tear film. Together, they protect the vital external components of the eye from the environment. Injuries, surgical trauma, and autoimmune diseases can damage this system, and in severe cases, tissue engineering strategies are necessary to ensure proper wound healing and recovery. Dry eye is another major concern and a complicated disease affecting the ocular surface. More effective and innovative therapies are required for better outcomes in treating dry eye. This review focuses on the regenerative medicine of the conjunctiva, which is an essential part of the ocular surface system. Features and advances of different types of biomolecular materials, and autologous and allogeneic tissue grafts are summarized and compared. Specifically, vitrigel, a collagen membrane and novel material for use on the ocular surface, offers significant advantages over other biomaterials. This review also discusses a breakthrough microfluidic technology, "organ-on-a-chip" and its potential application in investigating new therapies for dry eye.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed2310    
    Printed70    
    Emailed0    
    PDF Downloaded145    
    Comments [Add]    

Recommend this journal