About MEAJO | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions to authors | Online submission | Subscribe | Advertise | Contact | Login 
Middle East African Journal of Ophthalmology Middle East African Journal of Ophthalmology
Users Online: 860   Home Print this page Email this page Small font sizeDefault font sizeIncrease font size


 
  Table of Contents 
ORIGINAL ARTICLE
Year : 2016  |  Volume : 23  |  Issue : 3  |  Page : 250-252  

Ocular pulse amplitude and retinal vessel caliber changes after intravitreal dexamethasone implant


Department of Retina, Beyoglu Eye Training and Research Hospital, Istanbul, Turkey

Date of Web Publication12-Jul-2016

Correspondence Address:
Ihsan Yilmaz
Bereketzade Cami Sk. No. 2, Beyoglu, Istanbul
Turkey
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0974-9233.186112

Rights and Permissions
   Abstract 

Purpose: The purpose of this study is to evaluate possible changes in ocular pulse amplitude (OPA), retinal arteriole caliber (RAC), and retinal venule caliber (RVC), following the intravitreal injection of dexamethasone implants (DIs).
Methods: Thirty-four eyes of 34 patients with macular edema were included. All participants received a full ophthalmologic examination at baseline. RAC and RVC were measured via optical coherence tomography; OPA and intraocular pressure (IOP) were measured via dynamic contour tonometry at baseline, month 1, and month 3. Statistical analysis was performed for before-after comparison of OPA, IOP, RAC, and RVC measurements.
Results: The mean OPA (in order to baseline, month 1, month 3) was 2.8 ± 0.8, 2.9 ± 1.0, 2.9 ± 0.9. The mean IOP was 16.8 ± 2.9, 17.3 ± 2.7, 18.4 ± 2.9 mmHg. The mean RAC was 97.8 ± 9.2, 97.2 ± 9.0, 97.6 ± 9.4. The mean RVC was 124.4 ± 8.2, 124.8 ± 8.8, 123.8 ± 8.2. There were no statistically significant changes in RAC (P = 0.688), RVC (P = 0.714), OPA (P = 0.348), and IOP (P = 0.115). There was also no correlation between RAC and OPA (r = 0.12, P = 0.62) or RVC and OPA (r = 0.16, P = 0.68) at the last visit.
Conclusion: The intravitreal injection of DI does not significantly affect RAC, RVC, or OPA, which indicates that the treatment does not alter overall retinal-choroidal vasculature or hemodynamics.

Keywords: Dexamethasone Implant, Ocular Pulse Amplitude, Ozurdex, Retinal Vessel Caliber


How to cite this article:
Yilmaz I, Perente I, Kesim C, Saracoglu B, Yazici AT, Taskapili M. Ocular pulse amplitude and retinal vessel caliber changes after intravitreal dexamethasone implant. Middle East Afr J Ophthalmol 2016;23:250-2

How to cite this URL:
Yilmaz I, Perente I, Kesim C, Saracoglu B, Yazici AT, Taskapili M. Ocular pulse amplitude and retinal vessel caliber changes after intravitreal dexamethasone implant. Middle East Afr J Ophthalmol [serial online] 2016 [cited 2021 Oct 23];23:250-2. Available from: http://www.meajo.org/text.asp?2016/23/3/250/186112


   Introduction Top


The dexamethasone drug delivery system (Ozurdex® , Allergan, Irvine, CA, USA) is a biodegradable, intravitreal implant that provides a sustained-release delivery of 0.7 mg of preservative-free dexamethasone to the vitreous. [1]

Ocular pulse amplitude (OPA) signifies the difference between systolic and diastolic values of pulsatile intraocular pressure (IOP) and thus indirectly reflects choroidal blood flow. [2] Studies have also shown that intravitreal anti-vascular endothelial growth factor (VEGF) agents affect ocular blood flow. [3]

Reflective of retinal blood flow, [4] retinal arteriole caliber (RAC), and retinal venule caliber (RVC) can be measured using color fundus photography, [5] retinal angiography photographs, [6] and optical coherence tomography (OCT) scans. [2] Earlier research found that intravitreal anti-VEGF agents significantly dilate retinal venules and constrict retinal arterioles although the underlying mechanisms remain unclear. [7] Further, it has been shown that anti-VEGF agent may induce a reduction in choroidal thickness. [8]

All corticosteroids, including dexamethasone, inhibit the expression of VEGF and other pro-inflammatory cytokines such as ICAM-1, interleukin-6, and MCP-1. [9] Dexamethasone implants (DIs) may therefore affect choroidal blood flow and retinal vessels a similar to anti-VEGF agents. In response, we aimed in this study to evaluate possible changes in RAC, RVC, and OPA, following the intravitreal injection of DI.


   Methods Top


The eyes of 34 consecutive patients who fulfilled the present study's inclusion criteria were included for participation. OCT scans (Spectralis, Heidelberg Engineering, Heidelberg, Germany) and dynamic contour tonometry (DCT) measurements (Pascal DCT, Swiss Microtechnology AG, Port, Switzerland) were performed at baseline, month 1, and month 3.

Criteria for inclusion were age exceeding 18 years, diabetic macular edema (DME) or macular edema secondary to retinal vein occlusion (RVO), and recently planned intravitreal Ozurdex® implantation. All patients with history of treatment for macular edema, history of ocular surgery in the past 6 months, history of laser photocoagulation, or uncontrolled systemic disease or other contraindication for a DI were excluded. This study was conducted according to the principles of the Declaration of Helsinki. All patients were volunteers, each of whom provided his or her informed consent after the study was explained.

Ocular pulse amplitude and retinal venule caliber measurements

RAC and RVC were calculated from OCT scans. The caliber of temporal retinal arterioles and venules were measured at a distance of the diameter of one disc from the margin of the optic disc using the caliber tools of Spectralis software [Figure 1].
Figure 1: Retinal arteriole caliber and retinal venule caliber measurements via optical coherence tomography

Click here to view


Statistical analysis

For each variable, normality was checked via the Shapiro-Wilk test. To compare RAC, RVC, OPA, and IOP values from before and after injection, a one-way ANOVA was employed. Pearson's correlation coefficient analysis was applied to detect correlations of RAC and RVC to OPA. Statistical Package for the Social Sciences version 20 (SPSS, Chicago, IL, USA) was used for data analysis, and values of P < 0.05 were considered statistically significant.


   Results Top


Participant characteristics

The mean age was 63.6 ± 8.2 years (48-84). Nineteen participants (55.9%) were female and 15 participants (44.1%) were male. Twenty-three eyes (67.6%) had DME, 8 eyes (23.5%) had BRVO, and 3 eyes (8.8%) had CRVO. The mean BCVA was 0.2 ± 0.1 decimal (0.01-0.4). The mean axial length was 22.7 ± 0.7 mm (21.6-24.3). The mean central corneal thickness was 536 ± 43 μm (461-634). The mean IOP was 16.8 ± 2.9 mmHg (11.2-20.0). The mean CMT was 515 ± 166 μm (231-986). The mean SCT was 330 ± 51 μm (241-433).

Ocular pulse amplitude and intraocular pressure measurements

The mean OPA (in order to baseline, month 1, month 3) was 2.8 ± 0.8 (1.5-4.8), 2.9 ± 1.0 (1.7-5.1), and 2.9 ± 0.9 (1.6-4.9). The mean IOP (mmHg) was 16.8 ± 2.9 (11.2-20.0), 17.3 ± 2.7 (13.5-25.0), and 18.4 ± 2.9 (14.0-23.0). Pascal tonometry revealed no statistically significant changes in OPA and IOP from baseline to month 1 and month 3 (P = 0.348, P = 0.115).

Retinal arteriole caliber and retinal venule caliber measurements

The mean RAC (μm) (in order to baseline, month 1, month 3) was 97.8 ± 9.2 (78-110), 97.2 ± 9.0 (80-108), and 97.6 ± 9.4 (82-108). The mean RVC (μm) was 124.4 ± 8.2 (119-132), 124.8 ± 8.8 (118-130), and 123.8 ± 8.2 (116-132). There was no statistically significant change in RAC and RVC measured via OCT from baseline to month 1 and month 3 (P = 0.688, P = 0.714).

There was also no correlation between RAC and OPA (r = 0.12, P = 0.62) or RVC and OPA (r = 0.16, P = 0.68) at the last visit.


   Discussion Top


The results of this study show that DI poses no significant effects on RAC, RVC, and OPA in patients with DME and macular edema secondary to RVO. Although all corticosteroids, including dexamethasone, inhibit the expression of VEGF and other pro-inflammatory cytokines and reduce vascular permeability, they do not catalyze overall alterations in ocular vasculature.

Previous studies have shown that ocular vasculature and ocular blood flow may be affected by anti-VEGF injections. [4],[7] Wickremasinghe et al. found in two studies that intravitreal ranibizumab significantly dilates retinal venules. [4],[7] By contrast, Pekel et al. showed that RAC and RVC remained unaffected following three intravitreal ranibizumab injections, [2] as well as that neither OPA nor RAC and RVC changed significantly. [2]

Some other previous studies have shown that ocular vasculature and ocular blood flow may be affected by steroid injections. [10] Lee et al. reported that high-dose systemic corticosteroid treatment also significantly reduces choroidal thickness. [10] These results suggest that the implants might impact choroidal circulation although the results of our study have shown the opposite.

This study poses a few limitations. Its sample was small; it did not present any anatomical or functional result of the treatment, and it involved only a brief follow-up period.

To the best of our knowledge, with this study, we have demonstrated for the first time that DI does not affect RAC, RVC, or OPA. Although corticosteroids such as dexamethasone inhibit the expression of VEGF, unchanged RAC, RVC, and OPA indicate that the implants do not change ocular vasculature in the short term and do not alter overall retinal-choroidal vasculature or hemodynamics in patients with DME and RVO. We are confident that further studies with longer follow-up periods can support our findings.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

 
   References Top

1.
Hunter RS, Lobo AM. Dexamethasone intravitreal implant for the treatment of noninfectious uveitis. Clin Ophthalmol 2011;5:1613-21.  Back to cited text no. 1
    
2.
Pekel G, Acer S, Çetin EN, Yagci R, Kasikçi A, Çevik A. Ocular pulse amplitude and retinal vessel caliber changes after intravitreal ranibizumab. Int Ophthalmol 2015;35:657-62.  Back to cited text no. 2
    
3.
Hosseini H, Lotfi M, Esfahani MH, Nassiri N, Khalili MR, Razeghinejad MR, et al. Effect of intravitreal bevacizumab on retrobulbar blood flow in injected and uninjected fellow eyes of patients with neovascular age-related macular degeneration. Retina 2012;32:967-71.  Back to cited text no. 3
    
4.
Wickremasinghe SS, Xie J, Guymer RH, Wong TY, Kawasaki R, Qureshi S. Retinal vascular changes following intravitreal ranibizumab injections for neovascular AMD over a 1-year period. Eye (Lond) 2012;26:958-66.  Back to cited text no. 4
    
5.
Lundberg K, Kawasaki R, Sjølie AK, Wong TY, Grauslund J. Localized changes in retinal vessel caliber after focal/grid laser treatment in patients with diabetic macular edema: A measure of treatment response? Retina 2013;33:2089-95.  Back to cited text no. 5
    
6.
Liew G, Tufail A, Cosatto VF, Tan AG, Zarranz-Ventura J, Sim DA, et al. Retinal vessel caliber changes in vasculitis. Retina 2015;35:803-8.  Back to cited text no. 6
    
7.
Wickremasinghe SS, Guymer RH, Wong TY, Kawasaki R, Wong W, Qureshi S. Retinal venular calibre dilatation after intravitreal ranibizumab treatment for neovascular age-related macular degeneration. Clin Experiment Ophthalmol 2012;40:59-66.  Back to cited text no. 7
    
8.
Mazaraki K, Fassnacht-Riederle H, Blum R, Becker M, Michels S. Change in choroidal thickness after intravitreal aflibercept in pretreated and treatment-naive eyes for neovascular age-related macular degeneration. Br J Ophthalmol 2015;99:1341-4.  Back to cited text no. 8
    
9.
Wang K, Wang Y, Gao L, Li X, Li M, Guo J. Dexamethasone inhibits leukocyte accumulation and vascular permeability in retina of streptozotocin-induced diabetic rats via reducing vascular endothelial growth factor and intercellular adhesion molecule-1 expression. Biol Pharm Bull 2008;31:1541-6.  Back to cited text no. 9
    
10.
Lee TG, Yu SY, Kwak HW. Variations in choroidal thickness after high-dose systemic corticosteroid treatment in children with chronic glomerulonephritis. Retina 2015;35:2567-73.  Back to cited text no. 10
    


    Figures

  [Figure 1]



 

Top
  
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
   Introduction
   Methods
   Results
   Discussion
    References
    Article Figures

 Article Access Statistics
    Viewed3315    
    Printed218    
    Emailed0    
    PDF Downloaded125    
    Comments [Add]    

Recommend this journal