Close
  Indian J Med Microbiol
 

Figure 5: The generation of mirror artefact in high axial myopia. (a) Spectral domain-optical coherence tomography image of an emmetropic posterior pole is normally symmetrical around the 0–delay line, above the retina, after Fourier transformation. The lower half of the retina will be removed in image processing. The optical coherence tomography images will then move towards the 0–delay line. When a portion of the lower half will cross the 0–delay line, a symmetric image of the upper half will simultaneously cross the 0–delay line. (b) When the whole image crosses the line, the lower half is removed and only the upper half will be displayed as the processed result. (c) Spectral domain-optical coherence tomography image of a high myopic eye. Part of the peripheral retina crosses the 0-delay line of symmetry, and will be abnormally segmented in the final image. (d) As images approach the 0-delay line retina appears distorted as the symmetric axis fails to segment the upper and the lower half correctly

Figure 5: The generation of mirror artefact in high axial myopia. (a) Spectral domain-optical coherence tomography image of an emmetropic posterior pole is normally symmetrical around the 0–delay line, above the retina, after Fourier transformation. The lower half of the retina will be removed in image processing. The optical coherence tomography images will then move towards the 0–delay line. When a portion of the lower half will cross the 0–delay line, a symmetric image of the upper half will simultaneously cross the 0–delay line. (b) When the whole image crosses the line, the lower half is removed and only the upper half will be displayed as the processed result. (c) Spectral domain-optical coherence tomography image of a high myopic eye. Part of the peripheral retina crosses the 0-delay line of symmetry, and will be abnormally segmented in the final image. (d) As images approach the 0-delay line retina appears distorted as the symmetric axis fails to segment the upper and the lower half correctly